Crystalline Waterproofing

    Concrete Waterproofing with Crystalline Technology

    Crystalline chemicals improve concrete durability, lower maintenance costs, and extend building life cycles

    From foundations, floor slabs and exterior pre-cast panels, to water treatment facilities and underground urban infrastructure, concrete is one of the most commonly used building and construction materials. However, due to its composition, a mixture of rock, sand, cement, and water, concrete is often susceptible to damage and deterioration from water and chemical penetration.
    These deleterious effects can be avoided through the use of crystalline waterproofing technology, which effectively improves the durability and lifespan of concrete structures, thereby reducing long-term maintenance costs. This article explores how crystalline technology provides a high level of performance to concrete mixtures, materials, and structures, and what design professionals need to know in order to specify and understand how this chemical technology will enhance building projects.

    How Crystalline Waterproofing Technology Works

    Crystalline technology improves the durability and performance of concrete structures, lowering their maintenance cost and extending their lifespan by protecting them against the effect of aggressive chemicals. These high performance qualities result from the ways in which the crystalline technology works, when used with concrete.
    Crystalline waterproofing technology improves the waterproofing and durability of concrete by filling and plugging pores, capillaries, micro-cracks, and other voids with a non-soluble, highly resistant crystalline formation. The waterproofing effect is based on two simple reactions, one chemical and one physical. Concrete is chemical in nature. When a cement particle hydrates, the reaction between water and the cement causes it to become a hard, solid mass. The reaction also generates chemical by-products that lie dormant in the concrete.
    Crystalline waterproofing adds another set of chemicals to the mixture. When these two chemical groups, the by products of cement hydration and the crystalline chemicals, are brought together in the presence of moisture, a chemical reaction occurs. The end product of this reaction is a non soluble crystalline structure.
    This crystalline structure can only occur where moisture is present, and thus will form in the pores, capillary tracts, and shrinkage cracks in concrete. Wherever water goes, crystalline waterproofing will form filling the pore, voids and cracks.